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Abstract. The article introduces a general method of construction of asymmetrical regular factorial main-effect designs in 2n

runs. It presents a collection of optimal designs constructed by this method in 32, 64, 128, and 256 runs. The method provides
exploration of design structure and construction of designs with required properties. Construction of composite designs is given as
an example of design structure exploration.
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1. Introduction

It is both pleasant and honorable for the authors of this paper to participate in this special issue in commemoration
of Professor Sergey Aivazian and his substantial contribution to applied statistics. The next two paragraphs are
the reminiscences about Sergey Aivazian by one of the authors, Slava Brodsky. These memories are about Sergey
Aivazian’s participation in organizing conferences on applied statistics, as well as about his work as a member of the
editorial board of a journal section on applied statistics.

In the 70s and 80s, many people knew Sergey Aivazian from those conferences on applied statistical methods that he
was conducting. Me and a number of my colleagues were their participants. Although the planning of the experiments
is a preliminary stage for statistical analysis, I was among those who suggested that Sergey included works on the
design of experiment into the program of his conferences. He approved that, and since then, his conferences have had
included presentations on the design of experiment. I remember the 1979 conference in Tsakhkadzor. Aivazian was
the head of the All-Union School of Applied Statistical Analysis. My colleagues and I made a presentation there
(Brodsky et al., 1979). I remember that other scientists from various organizations also presented their works on the
design of experiment at this conference. Of these, I remember well the participation of Valery Fedorov (who at that
time was one of the leaders of that field of the applied statistics). At one point, Sergey and I played soccer against one
of the local teams of the professional league. But that was only once as Sergey was usually playing tennis. Then there
was another event in 1983. And works on the design of experiment were presented there too.

Sergey and I were not friends (I called him “Sergey Artemievich” – not Sergey, he called me “Vyacheslav
Zinovievich” – not Slava), although we had known each other for a long time (I was then married to Tanya Golikova,
and she and Sergey studied together at Moscow University). We closely communicated with him at the meetings of
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the mathematical section of the journal “Industrial Laboratory”, where we both worked on a volunteer basis for about
25 years. And almost all my memories of Sergey Artemievich come from there. It was the only journal in the USSR
that published articles on applied statistics. There was something about the nature of this section that distinguished it
from other editorial boards: close connection between reviewers an authors of works. If an article contained a sound
idea, then nothing – not a confusing explanation, not bad writing – could stop it from being published (albeit after
revision). Sergey Aivazian was among of those who supported this high level work with the authors.

Now about the article. It presents methods of construction of regular uniform main-effect (RUME) designs in
runs. These methods are based on the mathematical theory of symmetrical factorial designs, which was elaborated
in Bose’s (1947) and Rao’s (1946, 1950) seminal papers as well as in theirs and other authors’ subsequent works.
Rao introduced a concept of hypercubes of strength t, which are designs consisting of finite Euclidean space points.
Coordinates of each point satisfy a system of linear equations with certain properties. Brodsky (1976) brought
into consideration more general constructions. He called such designs “geometric factorial”, the name selection
putting an emphasis on the method of construction rather than on the combinatorial features of the plans. That allows
consideration of more general constructions retaining useful mathematical features.

The designs constructed in the article involve many number of observations and many variables. An area of
application of our results, as we see it, is basically a screening procedure when the researcher is trying to determine
significant variables among others (see recent developments described in works of Pojic et al. (2015) and Yurata et al.
(2020) where the authors emphasize usefulness of factorial designs for screening).

Section 2 of the article contains necessary definitions and results that are used throughout the paper.
Section 3 considers two-level RUME-designs that are constructed from points of finite Euclidean space EG(m, 2),

coordinates of the points being consistent with a system of linear equations, or, equivalently, constructed from
points of finite projective geometry PG(n− 1, 2)(m 6 2n). Such designs are called geometric. Then we construct
asymmetrical RUME-designs (which are called generalized geometric) from two-level geometric RUME-designs. We
introduce an origin matrix of the generalized geometric design that is instrumental in construction of the designs.

In Section 4, we investigate properties of the origin matrices for various particular cases. That allows to obtain new
important results and construct new designs.

A summary of the results is given in Section 5.

2. Basic definitions and preliminary results

In this article, we consider symmetrical designs (that have equal numbers of levels for each factor) and derived
from them asymmetrical designs (that have different numbers of levels). We follow definitions and results of theory
of the factorial design of experiments developed originally by Brodsky (1976, 1983, 2013, 2019). Following him, we
call a design uniform if every level of any factor occurs in the design equal for the given factor number of times.

Brodsky’s next definition is based on a fundamental concept introduced by Plackett (1946) – the condition of
proportional frequency.

Let W j1j2
1,2 be the number of simultaneous occurrences of the j1-th level of the factor F1 with the j2-th level of the

factor F2; W j1
1 – the number of the j1-th level of the factor F1 occurrences; W j2

2 – the number of the j2-th level of
the factor F2 occurrences; N – the number of runs. If proportional frequency condition

NW j1j2
1,2 =W j1

1 W j2
2 (1)

holds for two arbitrary factors F1 and F2, such design is called regular design of strength 2, or regular main-effect
design.

For the uniform design, the condition Eq. (1) is equivalent to the following:

s1s2W
j1j2
1,2 = N, (2)

where s1 is the number of levels of the factor F1, s2 – the number of levels of the factor F2.
Thus, the condition Eq. (2) determines regular uniform main-effect (RUME) designs. It is known (Brodsky, 1976)

that RUME-design allows to get a diagonal covariance matrix of the design for the main effect model providing
transformation from factor levels of the designs to regressional variables had been specially chosen. (For 2-level
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variables, for example, such transformation substitutes one level of factor with −1 and second level, with +1.)
Moreover, RUME-designs are A-, D-, G, and Q-optimal for such models.

We will denote the design that includes the factorsF1, F2, . . . , Fn, each possessing s1, s2, . . . , sn levels accordingly
by

s1s2 . . . sn//N.

When referencing factors with the equal number of levels, we will use a power sign. As appears from the condition
Eq. (1), each RUME-design in 2n runs may be represented in the following general form:

2n24n48n8 . . . //2n.

The nature of the frequency condition points to resemblance between RUME-designs and various combinatorial
schemes. That has led to developing of a number of productive geometric methods aimed at constructing RUME-
designs and based on the theory of finite Galois fields.

Let’s now state basic facts that support the use of finite projective geometries tools for constructing RUME-designs
in 2n runs. Consider a set of all different combinations (x1, x2, . . . , xn), where xi (i = 1, . . . , n) are elements of
Galois field GF(2), i.e. 0 or 1, and all xi (i = 1, . . . , n) are not equal to zero simultaneously. Thus, the defined set
forms a finite projective geometry PG(n− 1, 2). We shall call the combination (x1, x2, . . . , xn) a point.

Denote points (1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1) by 1, 2, . . . , n correspondingly, and select them as a basis
of PG(n− 1, 2). Then every point p from PG(n− 1, 2) may be represented as

p = a11+ a22+ . . .+ ann (3)

where a1, a2, . . . , an are also elements of GF(2). Denote point p in Eq. (3) by 1a12a2 . . .nan . We will drop the
terms of the form i0 and substitute i for i1. Let’s put points 1, 2, . . . , n into correspondence with c1, c2, . . . , cn-the
1-st, 2-nd, . . ., n-th columns of the standard complete 2n//2n design. The standard form of the matrix of that design
is ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
1 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 1
0 1 . . . 1
1 1 . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(4)

Then put point 1a12a2 . . .nan into correspondence with the column a1c1 + a2c2 + . . .+ ancn, where the addition
is by modulo 2 and is performed row by row. For example, for n = 5, the sum of first, second and fifth columns of
standard complete design 25// 32 corresponds to the point 125. In that way, PG(n− 1, 2) points will correspond to
the columns of some 2(2

n−1)//2n design. It may be shown that this design is a geometric factorial design (GFD),
and therefore it is a RUME-design (Brodsky, 2013). It follows from the replacement technique (Addelman, 1962;
Brodsky, 1976) that any 2l−1 points of PG(n− 1, 2) that belongs to an arbitrary (l − 1)-plane may be combined to
form a 2l-level factor. The simplest example of the replacement technique is the following correspondence between
two 2-level factor and 4-level factor:

2-level factors 4-level factor
0 0 0
0 1 → 1
1 0 2
1 1 3
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This correspondence means that we substitute columns of 2-level factors with one column of 4-level factor. We
will call the resulting factor of the replacement procedure a reconstructed factor.

A design may include two “reconstructed” factors if and only if their forming planes do not intersect each other.
We will call any RUME-design that includes reconstructed factors from a GFD a generalized geometric factorial
design (generalized geometric RUME-design).

We do not know whether every RUME-design in 2n runs is a generalized geometric RUME-design. It is possible
to construct RUME-design that is not a GFD. An example of such 215//16 design is:∥∥∥∥ D 0 D

D∗ 1 D∗∗

∥∥∥∥ ,
where D is 27// 8 RUME design, 0 and 1 are correspondingly the 0-vector and 1-vector of 8 elements, design D∗ is
generated from design D by permutation of columns, design D∗∗ is generated from design D∗ by an inversion of
levels 0 and 1. This design and GFD 215// 16 have different structure, in the sense that they cannot be converted one
into another by permutation of rows and/or columns and by inversion of levels 0 and 1. On the other hand, we are
unaware of existence of any RUME-design in 2n runs containing at least one multilevel factor that does not belong to
generalized geometric RUME-design class.

This paper presents methods of construction of generalized geometric RUME-design. All RUME-designs described
in the literature as well as a number of new ones can be constructed using this method. Each design constructed in
this way is called GFD or generalized geometric RUME-design and appears to be RUME-design.

3. Method of construction

Now we consider a method of construction of saturated designs, i.e. designs where a number of parameters to
be estimated equals to a number of runs. Consider generalized geometric RUME-designs R× (2s)

h+1
//2n, where

R = 2r, n = s + r, s 6 r, h 6 2r−1 (r, s, h are positive integers). A lot of generalized geometric RUME-design
of different types can be obtained out of these designs by splitting (Addelman, 1962; Brodsky, 1976) or by their
structure investigation.

We will call matrix M r,s,h = {mij} an origin matrix if
1) Elements of M r,s,h are points of PG(r − 1, 2);
2) Number of M r,s,h rows is equal to 2s − 1;
3) Number of M r,s,h columns is equal to h;
4) Any two elements of any row of M r,s,h are different;
5) There exists such one-to-one correspondence between rows of M r,s,h and points of PG(n − 1, 2) that for

any k(1 6 k 6 h), t1, t2, t3(1 6 t1 < t2 < t3 6 2s−1) equality f(t1) = f(t2) + f(t3) is true if and only if
mt1k = mt2k +mt3k, where f(t1), f(t2), f(t3) are points of PG(s− 1, 2) corresponding t1-th, t2-th, t3-th
rows of matrix M r,s,h.

The requirement 5) means that the rows of matrix M r,s,h are isomorphic to elements of PG(s− 1, 2) in terms of
addition. It follows from the origin matrix definition that s 6 r, h 6 2r−1.

Suppose that positive integers s, r, h(s 6 r, h 6 2r−1) are given. Now we choose arbitrary (s − 1)-plane S in
PG(r− 1, 2) (which can be done because s 6 r) and set H consisting of h different points of PG(r− 1, 2). Let’s set
the following isomorphism between PG(r−1, 2) and GF(2r): point p = a11+a22+ . . .+arr corresponds to point
20a1 + 21a2 + . . .+ 2r−1ar. So the matrix comprised of elements located at the intersection of the multiplication
table rows, which correspond to points of S, and the table columns, which correspond to elements of H , is M r,s,h.
So s 6 r and h 6 2r−1 are necessary and sufficient for M r,s,h existence.

The offered method is grounded upon the following

Statement 1. The M r,s,h existence is equivalent to generalized geometric RUME-design R× (2s)
h+1

//2n existence
(R = 2r, n = s+ r, s 6 r, h 6 2r−1, r, s, h are positive integers).

It follows from the above that it is necessary and sufficient to divide points of PG(n− 1, 2) into nonintersecting
(r− 1)-plane (R-plane), which corresponds to 2r-level factor, and h+1 (s− 1)-planes, which correspond to 2s-level
factors, in order to construct such a design.
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Choose R-plane generated by (1, . . . , r) basis and some (s− 1)-plane (S-plane) generated by ((r + 1), . . . ,n)
basis. The R-plane coincides with PG(r − 1, 2). It is obvious that these planes do not intersect each other. Since the
basis of PG(n− 1, 2) is a combination of the basis of R- plane and the basis of S-plane, every PG(n− 1, 2) point
belonging neither to R-plane nor to S-plane can be represented as the sum of a R-plane point and a S-plane point,
and in a unique way. It allows us to represent points of other (s− 1)-planes as the origin matrix M r,s,h.

Element mij corresponds to the point of j-th (s− 1)-plane that is the sum of mij and i-th element of S-plane.
There exist a number of different origin matrices matching a given design. For instance, an origin matrix can be

constructed by using any multiplication table of the GF(2r) field as was described above.
In order to construct some design column, we are using linearly independent points of the corresponding plane. We

will call them forming points. Each (s− 1)-plane has s forming points while R-plane has r of them. A design column
that corresponds to some factor can be reconstructed from columns of the complete design 2n//2n that corresponds
forming points of the factor. Namely, the reconstructed factor is maintained at the i-th level if corresponding levels of
factors of the complete design form the combination that is binary representation of i. For example, N -level factor is
reconstructed according to following transformations from two-level factors:

2-level factors N-level factor
0 0 0 . . . 0 0 0
0 0 0 . . . 0 1 → 1
0 0 0 . . . 1 0 2

. . . . . . . . .
1 1 1 . . . 1 1 (N − 1)

We note here a few facts that considerably simplify construction of designs:
– The design column (let it be the first) that corresponds to S-plane consists of h zeros, h ones, . . ., and h (s− 1)

values;
– The design column that corresponds to R-level factor is R//R design repeated s times;
– If any column of the origin matrix is equal to sum of other columns, the corresponding column of the design is

equal to the sum of corresponding columns of the design and the first column.
Designs 8 ×48// 32, 16 ×216// 32, 16 ×416// 64, 32 ×232// 64, 16 ×816// 128, 32 ×432// 128, 64 ×264// 128,

64 ×464// 256, 32 ×832// 256, and 1617// 256 were first constructed by the offered method.
It is necessary to note that the Addelman-Kempthorne (1961) method with its generalization (Brodsky, 1981)

allows to construct 2× 49//32 and 2× 817//128 designs that can be used to create 8× 48//32 and 16 ×816//128
designs by appropriate replacement of two- and four-level factors.

The origin matrix M3,3,7, M4,3,15,M4,4,15 will be explored in the next section.

4. Origin matrix exploration

By origin matrix exploration, it is possible to obtain families of new generalized geometric RUME-design that
cannot be obtained from R× (2s)h+1//2n designs by usual transformations.

4.1. Origin matrix M3,3,7 exploration

The origin matrix M3,3,7 exploration allows to construct all possible generalized geometric RUME-design
8k × 4m//64. For l < m, generalized geometric RUME-design 8k × 4m//64 existence involves 8k × 4l//64
existence. So, the main problem here is the following: for every given k, to find the maximum value of m for which
generalized geometric RUME-design 8k × 4m//64 exists.

Consider the origin matrix M3,3,7 (the first row and first column do not belong to the matrix and are given for
information purposes only):
R-plane contains 7 points of the form 1a12a23a3 while S-plane contains 7 points of the form 4a45a56a6 . We

remind that every origin matrix row corresponds to S-plane point. These points are adduced at the most left column.
The given matrix is matching generalized geometric RUME-design 8× 88//64 (i.e. 89//64) and, correspondingly,

configuration of nine 2-planes in PG(5, 2).
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Fig. 1. A Magic Finite Projective Geometry PG(5, 2).

1 2 3 4 5 6 7
4 1 2 12 3 13 23 123
5 2 123 13 23 3 1 12

45 12 13 23 2 1 123 3
6 3 23 2 12 123 13 1

46 13 3 1 123 2 12 23
56 23 1 123 13 12 3 2

456 123 12 3 1 23 2 13

Consider an example (Brodsky, 1981) of constructing various asymmetrical main effect designs in 64 runs from
the orthogonal arrays (64, 63, 2, 2). Consider each point of the complete design 263//64 as point of the finite
Euclidean space EG(6, 2). There are 63 parallel pencils in EG(6, 2) that form finite projective geometry PG(5, 2).
Put 63 factors of the orthogonal arrays (64, 63, 2, 2) into correspondence with the points of this geometry. Points
x1, . . . ,xv ∈ PG(5, 2)(v 6 6) are said to be linearly independent if

Rg‖x1, . . . ,xv‖ = v.

Denote points (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) ∈ PG(5, 2) by 1, 2, . . . , 6 respectively. These points
are linearly independent. Any point (a1, . . . , a6) ∈ PG(5, 2) may by represented as a linear combination of points
1, 2, . . . , 6:

(a1, . . . , a6) = λ1(1, 0, . . . , 0) + . . .+ λ6(0, 0, . . . , 1) (5)

where λi = 0, 1 and all λi are not equal to zero simultaneously. Point Eq. (5) is denoted by 1λ12λ2 . . . 6λ6 . E.g.,
point (1, 1, 1, 0, 1, 0) is denoted by 1235. All 63 points of PG(5, 2) are presented in Fig. 1.

They are split into 9 subsets (displayed as triangles). Each subset contains 7 points. Only three of them are
independent. Therefore, the seven points are located on a two-dimensional plane (2-flat). In any 2-flat, seven points
are located on seven lines (1-flat). In Fig. 1, these lines passing through three points in each 2-flat are displayed as
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one circle and six line segments. For example, the left upper triangle in Fig. 1 represent a 2-flat containing seven
points: 5, 35, 3, 135, 13, 15, 1. Points 1, 3, 5 can be chosen as linearly independent. The seven points are located on
the seven lines: 15-35-13, 13-3-1, 15-5-1, 13-135-5, 15-135-3, 1-135-35, and 3-5-35.

The location of points of PG(5, 2) in Fig. 1 has the following additional property. Consider any three triangles
(2-flats) located in the same row. Then the three points similarly located in the triangles belong to one so-called
horizontal line (in 1-flat). E.g., in the three triangles of the second row, the central points 25,124, and145 belong to
one line.

The construction in Fig. 1 resembles a magic square and therefore is called a magic finite projective geometry
PG(5, 2).

Any three points located on the same line in PG(5, 2) belong to the parallel pencil corresponding to the main
effects of the two factors and to their interaction effect. Therefore, to form one four-level factor we may use the
replacement procedure. Similarly, any seven points located on one 2-flat may be used to form one eight-level factor.

Thus, each point in Fig. 1 is two-level factor, each line (1-flat) is four-level factor, each 2-flat is an eight-level
factor.

This method produces the following four main effect designs: 421//64 (21 lines), 83 × 414//64 (three 2-flat and 14
horizontal line), 88 × 47//64 (six 2-flats and seven horizontal lines), and 89//64 (nine 2-flat).

Various designs of the form 8m × 4n × 2l//64 can be constructed in a similar way. However, any one of them can
be derived from 89//64, 86 × 47//64, or 83 × 414//64 by splitting procedure.

Consider the following construction:

246 1246 1
134 234 12
35 15 13

1256 356 123
1236 136 2
145 12345 23

23456 2456 3

13456 1356 4
16 1456 45

256 245 46
2346 235 456
345 34 5
125 126 56

1234 12346 6

1235 2345 14
346 12356 1245
236 124 1346

1345 26 123456
12456 146 25

24 3456 2356
156 135 36

Here, nine 2-planes are arranged in three rows and three columns. Three points from any of horizontal rows form
1-plane (line). These lines will be called horizontal. Three points, identically placed in three 2-planes of any column
(for example, points 136, 34, and 146 in 2-planes of the second column) form a line, too. These lines will be called
vertical.

By using this arrangement, we construct the following RUME-designs:

89 × 40//64,

88 × 41//64,

87 × 42//64,

86 × 47//64,

85 × 48//64,
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84 × 410//64,

83 × 414//64,

82 × 415//64,

81 × 417//64,

80 × 421//64.

The RUME-design 88 × 41//64 corresponds to eight 2-planes (excluding 2-plane 1-12-13-123-2-23-3) and line
1-2-12.

The RUME-design 87 × 44//64 corresponds to seven 2-planes (excluding 2-planes 1-12-13-123-2-23-3 and
4-45-46-456-5-56-6) and 2 lines: 1-2-12 and 4-5-45.

The RUME-design 86 × 47//64 corresponds to six 2-planes of the second and third rows and 7 horizontal lines
(drawn up from 2-planes of the first row points).

The RUME-design 85 × 48//64 corresponds to five 2-planes of the second and third rows (excluding 2-plane
4-45-46-456-5-56-6), 7 horizontal lines (drawn up from 2-planes of the first row points), and also 4-5-45 line.

The RUME-design 84 × 410//64 corresponds to four 2-planes (three 2-planes from the third column and also
1246-234-15-356-136 - 12345-2456 2-plane) and ten following lines:

– Six vertical lines 1236-345-12456, 246-13456-1235, 134-16-346, 145-125-24, 35-256-236, and 23456-1234-156
drawn up from 2-planes of the first column points;

– Line 1456-235-12346 drawn up from 2-plane of the points of the 2-nd row and the 2-nd column;
– Line 2345-124-135 drawn up from 2-plane of the points of the 3-rd row and the 2-nd column;
– Two lines: 2346-34-26 and 1256-245-146.

The RUME-design 83 × 414//64 corresponds to three 2-planes of the 3-rd row and 14 horizontal lines (drawn up
from the 2-plane points of the 1-st and the 2-nd rows).

The RUME-design 82 × 415//64 corresponds to two 2-planes 1-12-13-123-2-23-3 and 1246-234-15-356-136-
12345-2456, fourteen horizontal lines (drawn up from 2-plane points of the 1-st and the 2-nd rows) and also line
246-35-23456 (drawn up from 2-plane points of the 1-st row and the 1-st column).

The RUME-design 81× 417//64 corresponds to 2-plane 1-12-13-123-2-23-3, four vertical lines 134-16-346, 1256-
2346-1345, 234-1456-12356, 356-235-26, seven horizontal lines 345-34-5, 125-126-56, 1235-2345-14, 236-124-
1346, 12456-146-25, 24-3456-2356, 156-135-36, five lines 4-46-6, 1246-15-2456, 1356-245-12346, 246-35-23456,
13456-256-1234, each of them drawn up from corresponding 2-plane points, and also 1236-45-123456 line.

The RUME-design 421//64 corresponds to twenty one horizontal lines drawn up from all nine 2-planes.
It is easy enough to show that generalized geometric RUME-designs

8k // 64 (k > 9),

88 × 42 // 64,

86 × 48 // 64,

85 × 49 // 64,

84 × 411 // 64,

83 × 415 // 64,

82 × 416 // 64,

81 × 418 // 64,

4k // 64 (k > 21)

do not exist.
The generalized geometric RUME-design 87 × 43//64 does not exist. The proof of that is rather complicated. It

rests upon the following statement (Boguslavsky, 1989).
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Statement 2. The origin matrix M3,3,k for k 6= 3, k 6= 7 can be augmented with one column so that the resulting
matrix would be M3,3,k+1.

Thus, for any k,m, the problem of construction of generalized geometric RUME-design 8k×4m//64 is completely
resolved.

4.2. Origin matrix M4,3,15 exploration

Consider the following origin matrix of generalized geometric RUME-design 16× 816//128:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 1 2 12 3 4 34 13 24 1234 23 124 134 14 234 123
6 2 12 1 4 34 3 24 1234 13 124 134 23 234 123 4

56 12 1 2 34 3 4 1234 13 24 134 23 124 123 14 234
7 3 4 34 14 234 123 134 23 124 1 2 12 24 1234 13

57 13 24 1234 134 23 124 4 34 3 123 14 234 12 1 2
67 23 124 134 1 2 12 123 14 234 24 1234 13 3 2 34

567 123 14 234 13 24 1234 2 12 1 34 3 4 134 23 124

R-plane contains 15 points of the form 1a12a23a34a4 while S-plane contains 7 points of the form 5a56a67a7 .
Let’s split R-plane points into 5 mutually nonintersecting lines: L1 (34-13-14), L2 (123-134-24), L3 (124-4-12), L4
(1-234-1234), L5 (2-3-23). Every line corresponds to 4-level factor. Then split M4,3,15 columns into 5 groups 3
columns each: (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), and (13, 14, 15). Denote the points of the groups by a[i],
where a is an element of S-plane and i = 1, 2, 3. In other words, points a[i] of the finite geometry correspond to
elements the origin matrix that belong to the a-th row and i-th column of any group of columns.

For 3 first groups, lines consist of points 6[1]-56[2]-5[3], 5[1]-6[2]-56[3], 56[1]-57[1]-67[1], 5[2]-67[2]-567[2],
6[3]-7[3]-67[3], 7[1]-7[2]-*, 57[2]-57[3]-*, 567[1]-567[3]-*, where asterisk denotes necessary point of L1, L2, L3.
For the 4-th group, lines consist of points 523-6134-56124, 6124-5623-5134, 71-56134-56734, 5124-671234-5673,
623-57234-5674, 6724-6713-1234, 57123-5714-234, and 72-712-1. There exist similar splitting for the points of the
5-th group and L5.

Each group sets 21 points in PG(6, 2). These points together with L1, L2, L3, L4, L5 points correspondingly can
be split into 8 pairwise nonintersecting lines. By doing these substitutions consecutively we can construct 3 new
saturated generalized geometric RUME-design:

813 × 412//128, 810 × 419//128, and 87 × 426//128.

4.3. Origin matrix M4,4,15 exploration

Consider the following origin matrix of generalized geometric RUME-design:
R-plane contains 15 points of the form 1a12a23a34a4 , while S-plane contains 7 points of the form 5a56a67a78a8 .
Now we divide 15 columns of the matrix into 5 groups of 3 columns each: (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11,

12), and (13, 14, 15). Here we will use the same notations as introduced before. Each group of columns sets 45
points in PG(7, 2) that can be split into pairwise nonintersecting three 2-planes and eight lines. The 2-planes consist
of points 7[1]-8[1]-78[1]-5[1]-57[1]-58[1]-578[1], 7[2]-8[2]-78[2]-6[2]-67[2]-68[2]-678[2], and 7[3]-8[3]-78[3]-
56[3]-567[3]-568[3]-5678[3]. The lines consist of points 6[1]-56[2]-5[3], 56[1]-5[2]-6[3], 68[1]-5678[2]-57[3],
5678[1]-57[2]-68[3], 67[1]-568[2]-578[3], 568[1]-578[2]-67[3], 567[1]-58[2]-678[3], and 678[1]-567[2]-58[3].

By substituting three 8-level and eight 4-level factors for three 16-level factors of the GGFD 1617//256 con-
secutively, according to the splitting method described above, we constructed new GGFDs: 1614 × 83 × 48//256,
1611 × 86 × 416//256, 168 × 89 × 4824//256, 165 × 812 × 432//256, and 162 × 815 × 440//256 that cannot be
constructed by known transformations.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 1 2 12 3 4 34 13 24 1234 23 124 134 14 234 123
6 2 12 1 4 34 3 24 1234 13 124 134 23 234 123 14

56 12 1 2 34 3 4 1234 13 24 134 23 124 123 14 234
7 3 4 34 14 234 123 134 23 124 1 2 12 24 1234 13
8 4 34 3 234 123 14 23 124 134 2 12 1 1234 13 24

78 34 3 4 123 14 234 124 134 23 12 1 2 13 24 1234
57 13 24 1234 134 23 124 4 34 3 123 14 234 12 1 2
68 24 1234 13 23 124 134 34 3 4 14 234 123 1 2 12

5678 1234 13 24 124 134 23 3 4 34 234 123 14 2 12 1
58 14 234 123 24 1234 13 12 1 2 3 4 34 23 124 134

678 234 123 14 1234 13 24 1 2 12 4 34 3 124 134 23
567 123 14 234 13 24 1234 2 12 1 34 3 4 134 23 124

67 23 124 134 1 2 12 123 14 234 24 1234 13 3 4 34
568 124 134 23 2 12 1 14 234 123 1234 13 24 4 34 3
578 134 23 124 12 1 2 234 123 14 13 24 1234 34 3 4

4.4. Composite designs in 2n runs

Compositeness is very important property of designs that researchers use in practice. After the experiments have
been carried out, the response surface often proves to have more complicated form than it was assumed when the
experiments were originally planned. So, it may be necessary to conduct an additional series of experiments. In this
situation, keeping already carried out experiments inside of the new design is a natural desire. A design that includes
the original series of experiments as a part of second series of experiments is called composite.

Construction of a composite design for R× sR//2n generalized geometric RUME-design (where R = 2r, S =
2s, n = s+r, s 6 r, s and r are positive integers) can be performed fromR×Sh+1//2n generalized geometric RUME-
design when h = 2r−1. It will consist in searching for such trials of R × SR//2n design that coincide with those
of the design R× (S/2)

R
//2n−1. It should be noted that generalized geometric RUME-design R× (S/2)

R
//2n−1

contains the levels of just (S/2)-level factors.
Let’s take the R× SR//2n design and consider a trial in which a particular S-level factor (S = 2s) has a value

below S/2. At that trial, the s-th forming point of the factor must be at zero level. Therefore, the basis factors of the
2n//2n design participating in the s-th forming point must be at zero level as well. It can be shown that for trials in
which all the S-level factors have values below S/2, all of the basis factors with numbers from s to n must be at zero
level. There are 2s−1 such trials. Their numbers are 1 + i2r, i = 0, . . . , 2s−1 − 1. The more general statement is also
true:

Statement 3. For R × SR//2n generalized geometric RUME-design (where R = 2r, S = 2s, n = s + r, s 6 r, s
and r are positive integers) in every row of the form 1 + i2r(i = 0, . . . , 2s−1) all S-level factors are maintained at
level i while in any other row 2r−s S-level factors are maintained at level 0, 2r−s S-level factors are maintained at
level 1, . . . , 2r−s S-level factors are maintained at level (S − 1).

Thus, when going from the original design R× (S/2)
R
//2n−1 to the second design R× sR//2n, only S/2 runs

remain in common. That is not enough for practical use. However, there may be found other composite designs for
more complicated models. These composite designs keep all runs of the original designs.

We will illustrate that by a simple example. Consider 45//16 design. Five 4-level factors correspond to the following
points: 1-2-12, 3-4-34, 13-24-1234, 14-234-123, and 134-23-124. We will select points with notations that do not
include “4” and get the 4× 24//8 design. Then assume that in addition to the original five factors, the investigated
response surface is influenced by 6-th factor that was maintained at some constant level in the original series of
experiments. Then we can run another series of experiments with the additional factor maintained at its second level,
and all the other 5 factors being at the same levels as in the original series. That allow us to estimate effects of the 5
original factors as well as the effect of the additional 6-th factor. Besides, we can estimate effects of interactions of the
original factors with the additional one. For instance, 6-th factor may be a source of raw materials. The investigated
response surface might be influenced by that. Combined design allows to estimate effect of that additional factor.
Moreover, there might be interactions between the 6-th additional factor and some of the original factors. These
effects can be estimated in the combined design as well. Note that any traditional composite design allows to estimate
more complicated model for the same factors involved. The introduced composite designs allow estimating model
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with additional factors. We will call such designs A-composite (meaning that additional factors are involved in the
investigation).

AnyR×SR//2n design for r > s allows to construct the A-composite designR×(2S)
R
//2n+1 using a procedure

similar to that described above. To achieve that, some (2S)-level factors of the design R × (2S)
R
//2n+1 should

be split into original and additional factors. After that, the original factors correspond to the forming PG points
with notation that does not include point with number s+ 1(2S = 2s+1). If it was done, half of R× (2S)

R
//2n+1

design runs would form R× SR//2n design for original factors. During carrying out these experiments the levels of
additional factors are to be planned in order the design might be augmented to R× (2S)

R
//2n+1 design.

5. Conclusion

In the paper, we present a method of construction of geometric factorial designs R × Sh+1//2s+r, where
R = 2r, S = 2s, n = s + r, s 6 r, h 6 2r−1: r, sh are positive integers. The method is based on an origin
matrix Mr,s,h construction that consists of 2s−1 rows and h columns. The origin matrix can be constructed from
GF(2r) multiplication table by settingR-plane points into correspondence with nonzero GF(2r) elements. In addition
to construction of such designs, the method provides exploration of design structure and allows construction of
A-composite designs.
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